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ABSTRACT Next-generation sequencing has been essential to the global response to
the COVID-19 pandemic. As of January 2022, nearly 7 million severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) sequences are available to researchers in public
databases. Sequence databases are an abundant resource from which to extract bio-
logically relevant and clinically actionable information. As the pandemic has gone on,
SARS-CoV-2 has rapidly evolved, involving complex genomic changes that challenge
current approaches to classifying SARS-CoV-2 variants. Deep sequence learning could be
a potentially powerful way to build complex sequence-to-phenotype models. Unfortunately,
while they can be predictive, deep learning typically produces “black box” models that can-
not directly provide biological and clinical insight. Researchers should therefore consider
implementing emerging methods for visualizing and interpreting deep sequence models.
Finally, researchers should address important data limitations, including (i) global sequenc-
ing disparities, (ii) insufficient sequence metadata, and (iii) screening artifacts due to poor
sequence quality control.
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COVID-19 has been called the “first pandemic in the post-genomic era” (1). The first
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome was published

on 12 January 2020, a week after the WHO first reported on the virus. Only 5 days later, the
sequence was used to design the mRNA vaccines that have changed the course of the pan-
demic (2). Since then, next-generation sequencing technology has enabled an unprecedented
view of genetic changes in the virus throughout both the duration of the pandemic and differ-
ent parts of the world (1, 3). Global data sharing of sequence data has been equally critical,
much to the credit of the GISAID EpiCoV database project (4). GISAID’s primary mission has
been to share flu genomes, in part to help design the annual flu vaccine (its full name being
the Global Initiative on Sharing All Influenza Data) (5). Now, at the beginning of 2022, the
GISAID EpiCoV database has accumulated nearly 7 million SARS-CoV-2 genome sequences,
and at present, around 800,000 sequences are being added each month. So much data has
been generated and made available that it has spurred the development of computational
tools for high-frequency sequence variant tracking (6) and even daily updates (7, 8).

Despite the surge in research efforts devoted to COVID-19 (9, 10), laboratory study of the
virus remains a more specialized and time-consuming effort than sequencing. Clinical and
epidemiological data are often superficial, measuring only a few variables, other than data
sets specific to particular facilities or narrow populations. We need to fully capitalize on the
abundant data that we do have to (i) anticipate how changes in the virus might affect health
before we have time to gather empirical data and (ii) better design and interpret experiments
to maximize our use of limited resources. So, how can we translate genome sequence data to
as much biological understanding and actionable clinical insight as possible?
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SARS-COV-2 IS RAPIDLY EVOLVING

SARS-CoV-2 has spent the first 2 years of the pandemic rapidly evolving in ways that have
had a big impact on virulence, transmission, and ability to evade our immune responses (11).
SARS-CoV-2 is an RNA virus, so its genome is prone to mutate—albeit at a rate mitigated by
its large genome size and the proofreading function of its exoribonuclease (12). The most fre-
quent mutations observed in coronaviruses are generally substitutions, although insertions
and deletions are observed as well (13). In some cases, insertions from other viral genomes
may occur, and, in fact, it appears as though the SARS-CoV-2 genome includes an insertion
from human RNA (14). In other human coronaviruses, the estimated mutation rate is around
3� 1024 substitutions per site per year (15, 16).

The amount of mutation observed during the COVID-19 pandemic has been even
more substantial than expected (17). An early estimate of SARS-CoV-2 mutation was
6 � 1024 substitutions per site per year (18). But the disease has spread widely around
the world since then, and novel variants transmit more quickly—increasing the opportuni-
ties for the virus to mutate (19, 20). The SARS-CoV-2 spike protein will continue to change in
the future. Studies on another human coronavirus, HCoV-OC43, suggest that genetic drift
plays a role in coronavirus adaptive evolution (21). One study estimates that as of July 2021,
SARS-CoV-2 had only “explored” 31% of the potential space for spike gene variation, based
on comparisons with related sarbecoviruses (22).

SEQUENCE ANALYSIS HAS STRUGGLED TO KEEP UP

The first widely used tool for tracking SARS-CoV-2 genomic variation was the Nextstrain
project, https://nextstrain.org. Nextstrain, originally developed as a general tool for viruses,
was adapted to offer clade definitions for SARS-CoV-2 based on phylogenetic analysis (23).
Phylogenetic tree reconstruction has been effective in inferring viral origins and trace trans-
mission changes but not as useful in classifying genomes because the virus can accumulate
and drop mutations in parallel across clades and subclades (24). The Pango nomenclature
(https://cov-lineages.org/), developed specifically for SARS-CoV-2, has largely supplanted
Nextstrain clade definitions (25). New sequences are assigned to Pango classifications, called
“lineages,” using the Random Forests classification algorithm. A new Pango lineage is defined
when a sufficient number of viral sequences emerges with a phylogenetic dissimilarity from
existing sequences above a set threshold (26). Particularly significant Pango lineages have
been identified by the World Health Organization (WHO) as variants of concern (VOC), which
are given Greek letter designations (27), such as Alpha (Pango lineage B.1.1.7), Beta (B.1.351),
Delta (B.1.167.2), and, recently, Omicron (B.1.1.529).

While Pango lineages appear clear and well-defined, the reality is that the genome
is much more fluid. If we want to understand how genome affects viral function, we
cannot rely on traditional taxonomic categorization. As mutations recur, revert, and
proliferate, taxonomy hits its limits of utility (11). As an initial matter, changes to SARS-
CoV-2 properties often implicate combinations of multiple mutations that emerge simul-
taneously—and then sometimes revert in whole or in part as the virus continues to
evolve (28, 29). For example, one frequent spike protein amino acid substitution, N501Y,
has appeared and reverted contemporaneously in multiple clades and lineages, with no
evidence of recombination (30). Simultaneous mutations can also have unpredictable,
nonlinear effects, i.e., they can be synergistic, antagonistic, or fully independent (31). This
complicates classical and Bayesian logistic regression methods for predicting fitness or
protein function from mutations, as they rely on assuming the independence between
mutations of individual amino acids or bases (32).

SARS-CoV-2 evolution is also highly nonlinear. Widespread lineages, such as Delta,
have spawned complex sublineages with distinct immune evasion and virulence prop-
erties, which often genetically share more in common with distantly related lineages
than their most recent ancestor (33, 34). The increasingly complex evolutionary history
of the virus stymies other proposed methods for genetically subtyping viral variants as
well (35–37). Further complicating the picture, some immunocompromised individuals
can have chronic infections lasting 6 months to a year (38). During long-term infection,

Perspective mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.00035-22 2

https://nextstrain.org
https://cov-lineages.org/
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00035-22


a spike protein can emerge with multiple variations, which phylogenetic analysis iden-
tifies as “long branch” divergence from the phylogenetic tree (39). Some long-term
patients may even be treated with convalescent plasma or antibodies, which may
select for immune evasive mutations (40). The Omicron variant has such a long branch
divergence, indicating that it may have emerged in an immunocompromised host or
after incubating in a nonhuman host such as mice (41, 42).

CAN DEEP SEQUENCE LEARNING HELP?

How can we predict the virulence, fitness, antibody evasion, and other key properties of
novel SARS-CoV-2 variants from complex, nonlinear changes in genetic sequence? Machine
learning can tackle complex pattern recognition problems by training a model that can clas-
sify the organisms or genes by phylogeny or phenotype based on features of their genetic
sequences. For example, we can extract k-mer (short subsequence) frequencies or other
combinations of bases/amino acids and use them as features to train classifiers using naive
Bayes classifier (NBC), support vector machines (SVM), decision tree-based methods, and
neural networks (43–49). Machine learning with k-mer features has been used for SARS-CoV-
2 to identify genetic fingerprints of specific infections (50), classify variants (51, 52), and train
a model to predict the pathogenicity of unknown viruses (53). Another approach is to build
profile hidden Markov models (HMMs), which can identify taxonomic lineages and variants
of viruses. HMMs have been used to align SARS-CoV-2 sequences and compare its spike pro-
tein to that of other coronaviruses (22, 54, 55).

Deep learning has emerged as an even more powerful and flexible tool to find patterns
in large and complicated data sets (56–59). Deep learning models use multiple layers of neu-
ral networks to automatically extract and transform features during training (56–58). We can
borrow deep learning methods developed for natural language processing (NLP) to find pat-
terns in sequence data, where bases and amino acids that make up genome and protein
sequences are analogous to semantic relationships between the words that make up sen-
tences (60–63). For example, one group of researchers has used concepts from semantic
processing, e.g., the frequency of correlated words, to identify potential mutagenic sites in
viruses including SARS-CoV-2 (64). An emerging approach to deep sequencing learning is to
transform protein sequences to embeddings that reflect their semantic structure, using the
BERT (bidirectional encoder representations from transformers) neural network architecture,
which Google developed to handle natural language search (65–68). An example of this
approach is k-means clustering of “ProtBERT” SARS-CoV-2 protein embeddings generated
by pretraining a BERT model on millions of UniProt sequences, which can be used to identify
mutational hot spots within the genome that may give rise to future variants (69).

A key goal for modeling is to predict the health risk of emerging variants before em-
pirical data are available. To this end, our group has developed a deep learning model to
predict patient outcomes for emerging sequence variants that takes into account patient
demographics (70). Others are working to integrate sequence learning with computational
protein structure models. For example, one project combines models of cell receptor binding
and immune epitope alteration with transformer-based deep learning models to predict the
fitness advantage of mutations (71). Deep learning has also been used to identify the relation-
ship between protein sequence and function using data from deep mutational scanning, an
experimental technique for massively parallel functional analysis of protein sequence site
mutations (72, 73). Using this approach, another project predicts the risk for emerging variants
by using a neural network to predict infectivity and vaccine breakthrough in combination
with protein structure and binding prediction to model antibody resistance (74).

LOOKING INSIDE THE DEEP LEARNING BLACK BOX

Deep learning methods excel at identifying complex features within data that allow
classification. But they have a major weakness. Deep learning relies on neural networks, and
it is very hard to determine why a neural network makes a particular classification or pre-
diction. Interpretable, or explainable, machine learning can fill this important gap (75, 76).
Interpretable machine learning is particularly important in bioinformatics, since explaining
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a model’s predictions is critical to justify making high-stakes clinical or research decisions
based on machine learning predictions (77, 78). Accordingly, developers of deep learning
approaches to SARS-CoV-2 should consider providing some functionality to interpret or
explain predictions.

Analytical tools for interpretability in deep learning include examining neural network
structure through relevance propagation, activation difference propagation, sensitivity analy-
sis, and saliency map methods (79–81). Integrated gradients have been used to analyze RNA
splicing models (82). An increasingly popular approach is the “attention”mechanism originally
developed for NLP (83, 84). Attention can highlight important features in text processed by
deep learning models (85–87). The amount of “attention” at a position in a sequence corre-
lates with the weight put on that position in a trained model, where high attention at a posi-
tion implies potential significance. Architectures combining convolutional neural networks
(CNNs) with attention have been used to identify sequence motifs for functional genomics,
e.g., transcription factor binding site detection (88, 89). Another group generated predictive
models of adverse drug reactions based on chemical structures by combining attention with a
CNN for each chemical property and structural feature in the model (90). Our group has
shown that attention in combination with a recurrent neural network-based sequence
model can provide insight into taxonomic and phenotypic classification of microbial 16s
rRNA sequences (91), as well as gene ontology classifications of protein sequences (92).

Recently, transformer-based architectures have emerged, like the aforementioned
BERT (93). Transformers are built on multiple attention modules (“heads”), which could
be used for interpretability (94). For example, one recent paper demonstrated how different
attention heads attended to different aspects of a learning task to identify nucleotide motifs
for promoter sequences (95). However, attention cannot be inherently drawn out of transform-
ers. Further processing steps are generally required to connect attention to specific linguistic
features (96). Our group recently applied a self-attention layer after a transformer as a way to
more readily extract and visualize attention across the sequence and applied it to SARS-CoV-2
(70). An important caveat is that, based on comparing attention to empirical evidence, atten-
tion does not necessarily imply explanation—at least in the sense of explaining precisely why
a prediction took place (97). Attention can only highlight features that the attention layer of
the deep learning model weighted most heavily during training, so it may only weakly indi-
cate the complete set of important features for a classification problem.

SEQUENCING DISPARITIES AND DATA CHALLENGES

Finally, we highlight three important data limitations that researchers should address.
First, as Fig. 1 shows, there are serious global inequities in sequencing data, with the
overwhelming majority of sequences coming from Europe and North America. GISAID
has encouraged data sharing from developing countries by trading restrictions on repub-
lishing sequence information for access to that information (98). But global sequencing
resources are disparately available (99). Even within Europe and the United States, racial
and regional disparities in sequencing found in other surveys (100) hamper SARS-CoV-2
sequencing as well. Second, the task of interpreting sequencing data is complicated by
insufficient sample metadata, making it difficult to understand how SARS-CoV-2 sequen-
ces affect patient outcomes, for example. In GISAID, most sequences only have informa-
tion about a patient’s age or gender (if available) and the location where the sample was
collected. As of 7 January 2022, a little over 270,000 sequences (4%) of the nearly 6.9
million have any metadata for patient outcomes, and many metadata entries are
unintelligible. Sequencing projects should be encouraged to collect and curate as
much information as possible about the sample and meet minimum information
standards for sequence metadata (101). Third, sequencing errors can lead to spurious
results. Quality control is critical to make sure that low-frequency sequence variants
are real (102). Sequences can pick up contaminants from other variants in the ampli-
fication process, leading to what appear to be recombinant variants but which are in
fact simply artifacts (103).
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